6.3 - I will simplify products and quotients of roots

$$
\begin{gathered}
\sqrt{20} \cdot \sqrt{6}=\sqrt{20 \cdot 6}=\sqrt{\left(2^{2}\right) 2 \cdot 3 \cdot 5}=\sqrt{4} \sqrt{30} \\
22_{32}
\end{gathered}
$$

$$
\begin{aligned}
& 2 x \sqrt[4]{16 x^{5} y^{7}} \cdot 3 x \sqrt[4]{70 x^{3} y^{10}}
\end{aligned}
$$

$$
\begin{aligned}
& =12 x^{4} y^{4} \sqrt[4]{70 y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{12}}{\sqrt{6}}=\sqrt{2} \\
& \frac{\sqrt{10} \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}}=\frac{\sqrt{10 \cdot 7}}{7}=\frac{\sqrt{70}}{7} \\
& \frac{\sqrt[3]{4}}{\sqrt[3]{32}}=\frac{\sqrt[3]{1}}{\sqrt[3]{8}}=\frac{1}{2} \\
& \frac{1}{\sqrt[3]{\sqrt[3]{2}^{2}}} \cdot \sqrt[3]{6^{2}} \\
& \sqrt[3]{6^{2}}
\end{aligned}=\frac{\sqrt[3]{6^{2}}}{6}=\frac{\sqrt[3]{36}}{6}=\sqrt[3]{6} \cdot \sqrt[3]{6^{2}}=\sqrt[3]{6^{3}}=6 .
$$

$$
\begin{gathered}
\sqrt[3]{\frac{12}{6}}=\frac{\sqrt[3]{12}}{\sqrt[3]{6}}=\sqrt[3]{2} \\
\frac{\sqrt{24}}{\sqrt{25}}=\frac{\sqrt{24} \ll_{12}^{2}<_{2}^{4_{2} / 2}}{5}=\frac{\sqrt{\left(2^{2} 203\right.}}{5}=\frac{2 \sqrt{6}}{5} \\
\text { whatif... } \frac{2 \sqrt{6}}{4}=\frac{1 \sqrt{6}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sqrt[3]{27 x_{3}^{x^{3}}}}{\sqrt[3]{5}}=\frac{\sqrt[3]{3^{3}}}{\sqrt[3]{5}}=\frac{3}{\sqrt[3]{5} \cdot \sqrt[3]{5^{2}} \cdot \sqrt[3]{5^{2}}}=\frac{3 \sqrt[3]{25}}{5} \\
& \frac{\sqrt[4]{5}}{\sqrt[6]{4 x^{3}}}=\frac{\sqrt[4]{5}}{\sqrt[4]{2^{2} x^{3}} \cdot \sqrt[4]{2^{2} x}=\frac{\sqrt[4]{20 x}}{2 x}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[3]{-121} \cdot \sqrt[3]{44}=\sqrt[3]{-121 \cdot 44}=\sqrt[3]{-111411} \text {-1.13 }=-113 \sqrt{4} \\
& \frac{\sqrt{-8}}{\sqrt{9}}=\frac{\sqrt{-8}<_{8}^{-1}<\varepsilon_{2}^{2} 2}{3}=\frac{\sqrt{-1 \cdot 2^{2} \cdot 2}}{3} \frac{2 i \sqrt{2}}{3}
\end{aligned}
$$

