7b - Solve systems of equations using substitution.

Graphing isn'† always practical:
-Takes time
-Easy to make mistakes
-Sometimes the solution isn' \dagger clear
-The solution isn' \dagger always on the graphing plane
So... We have other ways to solve systems of equations

By Substitution:

1. One of the equations must be in $x=$ or $y=$ form (or whatever variables are given).
2. Then substitute (replace) the value into the other equation.
3. Solve for both variables.

$$
\begin{array}{ll}
y=\underline{3 x} \\
x+2 y^{2} & =-21 \\
y=3 x & x+2 y=-21 \\
y=3(-3) & x+2(3 x)=-21 \\
y+6 x=-21
\end{array}
$$

intersectinglines: y

$$
\frac{7 x}{7}=\frac{-21}{7}
$$

$\begin{gathered}\text { consistent - } \\ \text { indeperident }\end{gathered} \quad$ Soly $(-3,-\overline{4})$

$$
\begin{array}{ll}
\text { Check: }(-3,-9) & x+2 y=-21 \\
\begin{array}{ll}
y=3 x & -3+2(-9)=-21 \\
-9=3(-3) & -3+-18=-21 \\
-9=-92 & -21=-212
\end{array}
\end{array}
$$

$$
\begin{aligned}
& 6 x-2 y y=-4 \rightarrow-\frac{2 y y}{-4}-\frac{6 x}{2}=4=213 x \\
& y=3 x+2 \\
& \hline x-2 y=-4
\end{aligned}
$$

infinite sulu.

Sole: any pt in the line $y=3 x+2$.

$$
\begin{gathered}
a+5 b=-3 \Rightarrow a=-3-5 b \\
3 a-2 b=8 \\
a+5 b=-3 \quad 3 a-2 b=8 \\
a+5(-1)=-3 \quad 3(-3-5 b)-2 b=8
\end{gathered}
$$

intersecting. $\begin{aligned} & a+-5=-3 \\ & +5+5\end{aligned} \quad-9-15 b-2 b=8$ consistent t indep.

$$
\begin{aligned}
& \begin{array}{l}
-x=2 \quad-9-17 b=8 \\
\text { Silu: }(2,-1) \frac{+9}{\frac{-17 b}{-17} \frac{17}{-17}}
\end{array} \\
& b=-1
\end{aligned}
$$

$$
\begin{array}{lll}
\text { parallel lines } & 8 x+2(11-4 x)=13 \\
8 x+22-8 x & =13
\end{array}
$$

$$
\begin{array}{cc}
\text { inconsistent } \quad & 8 x+22-8 x=13 \\
22 \neq 13
\end{array}
$$

$$
\begin{aligned}
& 8 \mathrm{x}+2 \mathrm{y}=13 \\
& 4 x+y=11-\Rightarrow y=11-4 x \\
& 8 x+2 y=13 \\
& 22 \neq 13 \\
& \text { False } \\
& \text { ni) sol. }
\end{aligned}
$$

$$
\begin{gathered}
\frac{y}{2}=\frac{1}{2} y 3 x-2 y=11 \\
x+y / 2=4 \Rightarrow x=4-\frac{y}{2} \\
3 x-2 y=11 \\
3\left(4-\frac{y}{2}\right)-2 y=11 \\
12-\frac{3}{2} y-\frac{2}{1} y=11 \\
12-\frac{7}{2} y=11 \\
-12
\end{gathered}
$$

$$
-\frac{3}{2}-\frac{2}{1}(c)
$$

$$
\frac{-3}{2}+\frac{4}{2}=\frac{-7}{2}
$$

intersecting
const. 6
indep.
Solu: $\left(3^{61,}, 2 / 7\right)$

$$
\begin{aligned}
& 3 x-2 y=11 \\
& 3 x-2(2 / 7)=11 \\
& 3 x-\frac{4}{7}=11 \\
& +\frac{4}{7} \quad \frac{-44}{7} \\
& \frac{3 x}{3}=11^{4 / 7} \text { or } \frac{81}{7} \\
& x=\frac{81}{21}=3^{18 / 21} \\
& x=3^{6617} \\
& \frac{0 r}{27}
\end{aligned}
$$

HW: pg. 379 \#16-22 (even) 26, 28
how many solu?
Solu?
check

January 25, 2013

