7c - Solve systems of equations by elimination.

Eliminate one variable using opposites.

$$
\begin{aligned}
& +\begin{array}{r}
4 x \\
+\begin{array}{l}
-4 x \\
0
\end{array}
\end{array} \\
& -3 y \\
& \frac{3 y}{0}
\end{aligned}
$$

Equations must be in standard form!

$A x+B y=C$ where a, b, c are integers
Example: $3 x+2 y=5$

$$
\begin{aligned}
& 3 e+4 f=19 \\
& 3 e+6 f=33
\end{aligned}
$$

If there are no opposites, we have to multiply each term in one equation to make opposites.

$$
\begin{array}{ccc}
3 e+4 f=19 & -B e-4 f=-19 \\
3 e+6 f=33 & \frac{3 e+6 f=33}{3 e+4 f=19} \\
\frac{2 f=\frac{14}{2}}{3 e+4(7)=19} \\
3 e+28=19 \\
-28=7 & \frac{3 e-28}{3}=\frac{9}{3} \\
\text { Solu: }(-3,7) & \ell=-3 \\
\text { intersectinglunes }
\end{array}
$$

$$
\begin{array}{ccc}
5(x-y)=(-8) 5 & 5 x-5 y=40 & x-y=-8 \\
7 x+5 y=16 & \begin{array}{c}
7 x+5 y=16 \\
\frac{12 x}{12}=-\frac{24}{12}
\end{array} & \begin{array}{c}
-2-y=-8 \\
+2 \\
\hline x=-2
\end{array} \\
\hline & y=-6
\end{array}
$$

$$
\begin{aligned}
-2(2 x-8 y)=(16)-2 & -4 x+14 y=-32 \\
4 x-16 y=-6 & \frac{4 x-16 y=-6}{} \\
& \text { no solus. } \\
& \text { parallel lines. }
\end{aligned}
$$

$$
\begin{aligned}
& 4(2 x+5 y)=14) 4 \longrightarrow 8 x+20 y=510 \\
& 2 x+5 y=14 \\
& s(5 x-4 y)=(2) 5 \rightarrow \frac{25 x-22 y^{-10}}{\frac{33 x}{33}=\frac{66}{33}} \\
& 2(2)+5 y=14 \\
& \begin{aligned}
& 4+5 y=14 \\
&-4
\end{aligned} \\
& x \cdot 2 \\
& \text { Solu: }(2,2) \\
& \text { intersecting }
\end{aligned}
$$

$$
\begin{aligned}
& 5(5 x-3 y)=(6) 5 \rightarrow 25 x-15 y=30 \\
& 3(2 x+5 y)=(-10) 3 \rightarrow \frac{6 x+15 y=-30}{31 x=\frac{0}{31}} \\
& 5 x-3 y=6 \\
& \text { 5(b) }-3 y=6 \\
& 0-3 y=6 \\
& \frac{-3 y}{-3}=\frac{6}{-3} \\
& x=0 \\
& y=-2 \\
& \text { Silu: }(0,-2) \\
& \text { intersecting. }
\end{aligned}
$$

HW: worksheet

January 28, 2013

