8.3 - I will find the side lengths of special right triangles

real life example:

As part of a packet for students attending a regional student council meeting, Lyndsay orders triangular highlighters. She wants to buy rectangular boxes for the highlighters and other items, but she is concerned I that the highlighters will not fit in the box she has chosen. If she knows the length of a side of the highlighter, Lyndsay can use the properties of special
 right triangles to determine if it will fit in the box.

Thm 8.8: $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Thm
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the legs are congruent and the hypotenuse is $\sqrt{ } 2$ times as long as each leg.

Thm 8.9: $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Thm
In a 30-60-90 triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{ } 3$ times as long as the shorter leg.

$$
\underbrace{45}_{x} \quad x=\frac{14}{\sqrt{2}} \frac{14 \sqrt{2}}{2}=7 \sqrt{2}
$$

$$
x=11 \sqrt{2} \cdot \sqrt{2}=11 \cdot 2=22
$$

$$
x=\frac{15}{\sqrt{2}}=\frac{15 \sqrt{2}}{2}
$$

$$
\begin{aligned}
& x=\frac{10 \sqrt{3}}{\sqrt{3}}=10 \\
& y=2(10)=20
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{14}{\sqrt{3}}=\frac{14 \sqrt{3}}{3} \\
& y=2\left(\frac{14 \sqrt{3}}{3}\right)=\frac{28 \sqrt{3}}{3}
\end{aligned}
$$

Determine the length of the leg of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with a hypotenuse length of 11.

$$
x=\frac{11}{\sqrt{2}}=\frac{11 \sqrt{2}}{2}
$$

Find the length of the side of an equilateral triangle that has an altitude length of 24 feet.

$$
\begin{aligned}
& x=\frac{24}{\sqrt{3}}=\frac{24 \sqrt{3}}{3}=8 \sqrt{3} \\
& 2(8 \sqrt{3})=16 \sqrt{3}
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{6}{\sqrt{2}}=\frac{6 \sqrt{2}}{2}=3 \sqrt{2} \\
y=2(3 \sqrt{2})=6 \sqrt{2}
\end{gathered}
$$

$$
\begin{aligned}
& x=\frac{5 \sqrt{2}}{\sqrt{2}}=5 \\
& y=5 \sqrt{2} \cdot \sqrt{2}=5 \cdot 2=10
\end{aligned}
$$

pg. 562 \#8-14 even, 18-24 even, 28, 30

