9.1 - I will graph, simplify, and solve exponential equations

Graph the exponential equations State its domain, range and type of graph
$y=3^{x}$

x	y	
0	$y=3^{0}=1$	$(0,1)$
1	$3^{1}=3$	$(1,3)$
2	$3^{2}=9$	$(2,9)$
-1	$3^{-1}=\frac{1}{3!}$	$(-1,1 / 3)$
-2	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$	$(-2,19)$

domain: $(-\infty, \infty)$ any real \#
range: $(0, \infty)$
graph is: increasing

simplify the exponential

$$
\begin{array}{ll}
x^{2} \bullet x^{3}=x^{5} & \text { (add exponents) } \\
\left(x^{2}\right)^{3}=x^{6} & \text { (malt. exponents) } \\
\sqrt[2]{ } x^{1}=x^{1 / 2} & \frac{\text { power }}{\text { index }}+ \\
\sqrt[4]{x^{3}}=x^{3 / 4} &
\end{array}
$$

$$
\begin{aligned}
& x^{2} \cdot x^{-5}=x^{-3}=\frac{1}{x^{3}} \\
& \left(2 x^{3}\right)^{4} 16 x^{12} \\
& \frac{2 x^{5}}{4 x}=\frac{1 x^{4}}{2} \quad \text { (subtract exp) } \\
& x^{1 / 2}=\sqrt[2]{x^{1}} \quad \begin{array}{l}
\text { power } \\
\text { index }
\end{array} \\
& x^{2 / 3}=\sqrt[3]{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(3^{\sqrt{2}}\right)^{\sqrt{8}}=3^{\sqrt{16}}=3^{4}=81 \\
& 5^{\sqrt{2}} \cdot 5^{\sqrt{8}}=5^{\sqrt{2}+\sqrt{8}}=5^{\sqrt{2}+2 \sqrt{2}}=5^{3 \sqrt{2}} \\
& 8^{8^{x} \cdot 16^{3 x}=2^{3 x} \cdot 2^{4 \cdot 3 x}=2^{3 x} \cdot 2^{12 x}=2^{15 x}} \begin{array}{l}
\text { need bane base }
\end{array} \\
& \underbrace{8^{\sqrt{5}} \div 2^{\sqrt{75}}=2^{3 \sqrt{5}} \div 2^{5 \sqrt{3}}=2^{3 \sqrt{5-5 \sqrt{3}}}} \begin{array}{l}
\text { need same } \\
\text { base }
\end{array}
\end{aligned}
$$

Solve and check.
To Solve: need same bases

$$
\begin{array}{ll}
5^{x}=5^{8} & \text { check: } \\
x=8 & 5^{8}=5^{8}
\end{array}
$$

$$
\begin{aligned}
& 3^{x}=9 \\
& 3^{x}=3^{2}
\end{aligned}
$$

$$
x=2
$$

$$
7^{6 x}=7^{2 x-20} \quad 7^{\text {check: }}=7^{2(-5) \cdot 20}
$$

$$
\begin{gathered}
6 x=2 x-20 \\
-2 x-2 x-20 \\
\hline 4 x=-5
\end{gathered}
$$

$$
7^{-30}=7^{-30}
$$

\(\left.$$
\begin{array}{|l|}\begin{array}{l}3^{6 x-5}=9^{4 x-3} \\
3^{6 x-5}=3^{2(4 x-3)} \\
6 x-5=2(4 x-3) \\
6 x-5=8 x-6 \\
-6 x \\
-6 x-6\end{array}
$$

\begin{array}{l}-5=2 x+6

\frac{16}{1=2 x}

\frac{1}{2}=x^{2}\end{array}\end{array}\right\}\)| $2^{x+1}=32$ |
| :--- |
| $2^{x+1}=2^{5}$ |
| $x+1=5$ |
| $x=4$ |

$$
\begin{aligned}
& 7^{x+1}=7^{3 x-2} \\
& x+1=3 x-2 \\
& \frac{-x^{+2}+2^{2}+2}{3=2 x} \\
& 3 / 2=x
\end{aligned}\left\{\begin{array}{l}
25^{3 x}=125^{x-2} \\
5^{2(3 x)}=5^{3(x-2)} \\
6 x=3 x-6 \\
\frac{-3 x=-3 x}{3 x=-6} \\
x=-2
\end{array}\right.
$$

$$
\begin{aligned}
& 2^{3 x-1}=\left(\frac{1}{8}\right)^{x} \\
& 2^{3 x-1}=\left(\frac{1}{2^{3}}\right)^{x} \quad \begin{array}{r}
3 x-1=-3 x \\
-3 x \\
-1=-6 x \\
1 / 6=x
\end{array} \\
& 2^{3 x-1}=2^{-3 x}
\end{aligned} \quad \begin{aligned}
& 5^{2 x+3}=\sqrt[2]{5},(x+4) \\
& 5^{2 x+3}=5^{1 / 2(x+4)} \\
& \frac{21 / 2 x}{2 x+3}=1 / 2 x+2 \\
& \frac{3}{2} x+3=2 \\
& \frac{-1 / 2 x}{} \\
& \frac{3}{2} x=-1 \\
& x=-\frac{2}{3}
\end{aligned}
$$

pg. 528 \#22, 40-5 ${ }^{4}$) even (eheek2人 change $<$ to $=$

